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A Helmholtz velocity profile with velocity discontinuity 2 U is embedded in an infinite 
continuously stratified Boussinesq fluid with constant Brunt-Vaisalii frequency N .  
Linear theory shows that this system can support resonant over-reflexion, i.e. the 
existence of neutral modes consisting of outgoing internal gravity waves, whenever 
the horizontal wavenumber is less than N/2*U.  This paper examines the weakly 
nonlinear theory of these modes. An equation governing the evolution of the amplitude 
of the interface displacement is derived. The time scale for this evolution is a-2, where 
01 is a measure of the  magnitude of the interface displacement, which is excited by an 
incident wave of magnitude O(a3).  It is shown that the mode which is symmetrical 
with respect to the interface (and has a horizontal phase speed equal to the mean of 
the basic velocity discontinuity) remains neutral, with a finite amplitude wave on the 
interface. However, the other modes, which are not symmetrical with respect to the 
interface, become unstable owing to the self-interaction of the primary mode with its 
second harmonic. The interface displacement develops a singularity in a finite time. 

1. Introduction 
In  a recent paper Acheson (1976) reviewed the phenomena of over-reflexion, in 

which a wave incident upon a shear layer generates a reflected wave of greater magni- 
tude, as well as a transmitted wave. He examined the energetic aspects of the 
phenomena, and described the way in which the excess reflected energy is extracted 
from the mean motion. A special case of over-reflexion is resonant over-reflexion 
when, according to linear theory, there is no incident wave and the shear layer 
spontaneously emits only outgoing waves. Earlier, Lindzen ( 1974) had drawn attention 
to this phenomenon in his study of the stability of a Helmholtz velocity profile 
embedded in an infinite continuously stratified Boussinesq fluid. Lindzen was motivated 
by some observations (Ottersten, Hardy & Little 1973) which showed large amplitude 
internal gravity waves in the neighbourhood of shear layers. Since clear-air turbulence 
is generally attributed to the instability of shear layers (see Atlas et uE. 1970; or the 
review by Dutton & Panofsky 1970)) Lindzen wished to investigate the possibility 
that the energy flux associated with outgoing internal gravity waves may inhibit 
instability of the shear layer. 

For the Helmholtz velocity profile with a basic velocity discontinuity of 2U and 
Brunt-Vaistilii frequency N (figure 1 ), perturbations with horizontal wavenumbers 
k are unstable when k > N/2*U (Drazin & Howard 1966, p. 46, where references to 
earlier work on this model are given). For k < N / U ,  however, there also exists a 
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FIGURE 1. The basic velocity profile and co-ordinate system. 

neutral mode, consisting of outgoing internal gravity waves; this mode is an example 
of resonant over-reflexion. Lindzen’s discussion of this phenomenon was confined to 
linear theory, and his conclusions were based solely on the wave energy flux associated 
with the outgoing waves vis-&is the growth in energy of the unstable modes. How- 
ever, Acheson (1976) showed that the energetics of resonant over-reflexion require a 
calculation of the mean flows generated by the outgoing wave packets, and the 
consequent changes in the total energy budget associated with these mean flows. 
McIntyre & Weissman (1978) have also drawn attention to these mean flows in a 
general discussion of radiating instabilities and resonant over-reflexion. Grimshaw 
(1976) undertook a weakly nonlinear analysis of the interaction between the unstable 
modes and the neutral mode for wavenumbers close to the critical wavenumber 
N/2*U,  and showed that the effect of the self-interaction of the second harmonic and 
the mean flow with the primary mode was the ultimate development of a finite 
amplitude wave on the interface (where the basic profile is discontinuous). 

For N / 2 U  < k < N/21U the model contains three neutral modes, each consisting 
of outgoing internal gravity waves and exhibiting the phenomena of resonant over- 
reflexion. One of these modes exists for 0 < k < N / U  and has a horizontal phase 
velocity equal to the mean of the basic velocity discontinuity (zero in the frame of 
reference described in figure 1);  this mode (called mode (i) hereafter) is symmetrical 
with respect to the interface. The other two modes have equal but opposite phase 
velocities, are not symmetrical with respect to the interface and will be designated 
as mode (ii) hereafter. Lindzen (1974) suggested that the existence of resonant over- 
reflexion would imply instability if a lower boundary were added to the model; 
calculations by Lindzen & Rosenthal(l976) confirm this, using linear stability theory. 
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In this paper we shall examine the weakly nonlinear aspects of resonant over-reflexion. 
It will be shown that mode (i) remains neutrally stable, with a finite amplitude wave 
on the interface, while mode (ii) is unstable owing to the self-interaction of the second 
harmonic with the primary mode. These results suggest that finite amplitude internal 
gravity waves may co-exist with shear layers provided that their horizontal phase 
velocity is equal to the mean of the basic velocity discontinuity across the shear layer 
[i.e. waves corresponding to mode (i)]. Waves corresponding to mode (ii) may also 
be observed, but they will have limited lifetimes. 

We shall assume that the basic state, in an infinite, inviscid, Boussinesq fluid, has 
a constant Brunt-Vaisala frequency N and a velocity in the x direction of & U in 
z 2 0 (figure 1) .  It will be assumed there is no variation in the y direction, as it may be 
shown that the stability criterion is independent of the wavenumber in the y direction. 
We shall use non-dimensional variables, based on a velocity scale U ,  a time scale N-1 
and a length scale UN-I;  the reduced pressure (i.e. the deviation of the pressure from 
its hydrostatic value) is scaled by p1 U 2 ,  where p1 is a reference density. Then the 
equations of motion are (e.g. Turner 1973, chap. 1 )  

u, + wz: = 0, (1 . lu)  

k U ,  + ~t + p ,  = FH = - uuX - W U ~ ,  ( I . l b )  

( l . l c )  

(1.ld) 

k W, -k W t  +pz: = Fpr = - U W ~  - W W ~ ,  

krx+r t -w  = G = -ur,-wr,. 

Here u and w are the x and z components of the perturbed velocity, p is the reduced 
pressure and r is the buoyancy (i.e. g(p-po)/po scaled by U N ,  where po(z) is the 
density in the basic state). The equations have been written in a form in which the 
linear terms are on the left-hand side and the nonlinear terms, represented by FH, 
Fv and G, are on the right-hand side. The symbols f indicate the regions z 2 5, where 
z = 6 is the equation of the perturbed interface. If the variables on the left-hand side 
are eliminated in favour of w, it  follows that 

where 

and 

L*w = M*, (1.2a) 

(1.2b) 

(1.2c) 

Here L* is a linear operator and M+ contains the nonlinear terms. 

the kinematic condition 

Anticipating that 6 will be small, we expand this condition in a Taylor series about 

The boundary conditions a t  the interface z = 5 are continuity of the pressure and 

ct:t+<,+u<x-w = 0 at  z = 5. (1.3) 

z = 0, so that 
&+cx-w  = H* at z = O f ,  ( 1 . 4 ~ )  

where H*=-(u<),-(@uz:),- ... at z =  O + .  (1.4b) 
6-2 
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Here we have used (1.1 a) to simplify the nonlinear terms Hf. Similarly, the pressure 
condition at  the interface is [PI? = Q, ( 1 . 5 ~ )  

where (1.5b) 

Here [p]? etc. denote the discontinuities in [ p ]  etc. across z = 0. 
The linearized equations, which were discussed by Drazin & Howard (1966), 

Lindzen (1974) and Lindzen & Rosenthal (1976), are now obtained by formally 
putting FH, F,, G ,  H* and Q equal to zero. Seeking solutions of (1.1) proportional to 
exp { i k ( z  - ct)}, we find that 

w = aA* exp { ik (x  - c t )  in*z} + a. I* exp { ik(x  - c t )  T i n k }  in z 2 0,  ( 1 . 6 ~ )  

5 = aA exp { ik (x  - c t ) } .  (1.6b) 

Here A ,  A* and I* are constant amplitudes, a is a small parameter introduced as an 
appropriate measure of the magnitude of E; and of the reflected waves (i.e. those terms 
associated with A*), while a. is a small parameter which measures the magnitude of 
the incident waves (i.e. those terms associated with I*).  We shall assume thoughout 
that k is positive. The constants n* are given by 

(K?*)~ = (cT I)-'- k2, (1.7) 

and the appropriate branch is selected by applying a radiation condition. This con- 
dition is derived here by requiring the exponent of the reflected wave, exp { & ink}, 
to decay exponentially when ci (the imaginary part of c) takes small positive values. 
Lighthill ( 1  960) has shown how this condition is derived by considering an appropriate 
initial-value problem and is equivalent to radiation conditions based on group-velocity 
criteria. If n* is n$ +in: and c is c, + ici, then the radiation condition is 

nf > 0, or nf = 0, n$(c,T I )  < 0. (1.8) 

Substituting (1.6) into the linearized boundary conditions (1.4) and (1 .ti), it follows 

aA*+aoI* = -ilc(cT 1)aA (1 .9a)  
that 

and n+(c - I)aA++n-(c+ I )  aA- = n+(c - 1 )  01, I+ + n-(c + 1) 01, I-. (1.9b) 

For resonant over-reflexion these equations have a non-trivial solution for A when 
I* are both zero. The condition for this to be so is 

n+(c - 1)2 + n-(c + 1)' = 0. (1.10) 

This is a dispersion relation which determines c as a function of k (q.v. Drazin & 
Howard 1966, p. 46) .  The solutions are 

(i) c = 0 for 0 < k2 < 1, (1.11 a) 

or (ii) c2 = (2k7-1- 1 for k2 > a. ( 1 . l l b )  

The solution (i) represents resonant over-reflexion of internal gravity waves (stationary 
in the present frame of reference); the restriction on k is obtained from the radiation 
condition (1.8). The solution (ii) also represents resonant over-reflexion €or < k2 < 4; 
the lower bound on k is obtained from the radiation condition (1.8) and implies that 
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the phase speed c is bounded by unity. For k2 > 4, the solution (ii) is an unstable 
mode. The corresponding values of n* are 

(i) n* = f (1 - k2)&, 

(ii) n* = 

( 1 . 1 2 ~ )  

(1.12 b )  

I n  the nonlinear analysis that  follows we shall consider wavenumbers k such that 

k (  1 k c ) / (  1 T c ) .  

Q < k < 2-4. We let E be a small parameter, put 

T = E t ,  Z = E Z ,  (1.13) 

and allow the amplitude A to depend on the slow time scale T ,  while A* (and I*) 
depend on both T and 2. This is a familiar technique in weakly nonlinear calculations. 
The form of the amplitude equation, and the appropriate scaling, may be deduced 
by the following heuristic argument. The introduction of the slow time variable T 
implies that  the time derivative a/at is -ikc+sa/aT. Thus the linear part of the 
amplitude equation may be found by replacing kc in (1.9) by 

w = kc + i s  a/aT (1.14) 

and interpreting the result operationally. Hence the amplitude equation may be 
expected to be 

L X ~ ( W ,  k )  A = 0l,(9+(~, k )  I+ + 9 - ( ~ ,  k )  I - }  + J ,  (1.15) 

where 9 ( k c ,  k )  is proportional to the dispersion relation [the left-hand side of (1 .  lo)], 
9 * ( k c ,  k )  are non-zero constants, I* are evaluated at Z = 0 _+ and J represents the 
nonlinear terms. I n  $ 2 the weakly nonlinear theory is described and precise expres- 
sionsobtainedforg(w, k ) ,  9 * ( ~ ,  k )  and J [q.v. (2.12)-(2.14)J. Hereitsuffices toobserve 
that 9( kc, k )  vanishes, and so the leading term on the left-hand side of (1.15) is 

iea9u(kc,  k) BA/BT. (1.16) 

Further, it may be anticipated that the nonlinear term J will be proportional to 
a3 IA 12A. Hence the required balance between the time-evolution term, the forcing 
term and the nonlinear term demands that E = a2 and a, = a3. The amplitude equation 

8A/BT = ,81AIzA+I, (1.17) 
is 

where the known forcing term I is a linear combination of I* (evaluated at  2 = 0 k ) 
and represents the effect of the incident wave packets on the interface. Away from 
the interface in z 2 0, the solution is described (to leading order in a) by (1.6), where 
A* a t  Z = Ok are determined in terms of A by (1.9a) and modulations in ]A* /  
propagate vertically upwards in z > 0 (downwards in z < 0) a t  the vertical group 
velocity (q.v. (2.6) and the subsequent discussion). 

The calculation of the nonlinear term J and the coefficient /3 is the principal purpose 
of this paper. The procedure and the results are described briefly in $ 2; the full analysis 
is very long and is given elsewhere (Grimshaw 1977). I n  $ 3  some solutions of the 
amplitude equation (1.17) are discussed, and in $ 4  there is a summary of the main 
conclusions. 

For mode (i) it transpires that /? is zero and J is O(a5). Nevertheless we shall retain 
the choice E = a2 and a, = a3 for this case as the nonlinear terms in the equations (1. 1 ) 
for the behaviour away from the interface are non-trivially O(a3) [i.e. the terms NF 
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in (2.6)]. The evolution of the interface amplitude A is determined by the forcing 
term I only for times O(a-2). A complete determination of the evolution of A including 
nonlinear effects would require the use of a longer time scale (say a4t) and will not be 
considered in this paper. For mode (ii) it transpires that the real part of /3 [q.v. (5.2)] 
is positive, owing principally to the trapped nature of the second harmonic. This fact, 
and its implications for the solution of (1.17), is fully discussed in $ 3. 

When k < +, mode (ii) ceases to exist. However, for mode (i) and this range of k, 
both the primary wave and the second harmonic satisfy the dispersion relation (1.10) 
so there is a resonance between these two. This is discussed briefly at  the end of 
$4. On the other hand, when k is close to the critical wavenumber 2-3 modes (i) and 
(ii) coalesce. This was discussed fully by Grimshaw (1976). At the end of $ 4  we com- 
plement that paper by discussing briefly the effect of a weak forcing. Further details 
of both these problems are given by Grimshaw (1977). 

2. Weakly nonlinear theory 

expansions of the form 
Motivated by the discussion at  the end of the last section, 

00 

g = 2 c m ( q  exp {imk(x - ct,}, 
m = - w  

w 

w = 2 w,,(T,z,Z)exp{imk(x-ct)}. 
m = - m  

we are led to consider 

(2.la) 

(2.lb) 

- 
Here g- ,  = gm, w, = w,, gl(T) = aA(T) and c satisfies the dispersion relation (1.11) 
for resonant over-reflexion. These expressions and the corresponding expressions for 
u, r and p are substituted into (1.2) and the boundary conditions (1.4) and (1.5). The 
result is, on equating like Fourier components, 

L* w, = M$ in 0, (2.2a) 

- imk(c T 1) cnt + &ac,:,/aT - W, = H$, a t  z = 0*, ( 2 . 2 b )  

[p,]? = &, at = O*. ( 2 .2c )  

Here the operators L* are defined by (1.2) and MZ,  H ;  and Q,, are the mth Fourier 
componentsofthenonlineartermsM*, H*and& (see (1.2), (1.4)and (1.5)respectively). 
Throughout the subsequent analysis the superscript & indicates an expression 
defined in z 2 0. 

For the Fourier component, m = 1, it may be shown that M? are O(a3).  Now 

and the appropriate solution for w1 is thus 

w, = aA*(T,Z)exp{ f in*z}+aoI*(T,Z)exp{ T in*z}+O(a5). (2.4) 

Here n* are given by (1.7). The error term is recorded as O(a5), rather than O(a3), 
in anticipation of the result that the leading term in M ;  is proportional to wl .  Indeed, 
it may be shown that MP = - 2k2(c T l )- luo w1 + O(a5), 
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where u, is the mean horizontal velocity, and is O(a2). Substituting (2.4) into (2.3),  
it follows that 

where 

8A* +as aA* 
8 2  kn*(c T 1)3 + N" 

as- = 

+ aiu, A* 
n*(c T 1)3 

NP = - + 0(4. 

(2 .6a)  

(2.6b) 

Now the vertical group velocity for an internal gravity wave of vertical wavenumber 
n, horizontal wavenumber k and intrinsic frequency w* is 

adIan = -nno*/(n2+k2). (2.7) 

Indeed the dispersion relation for such a wave is o*2(n2+k2) = k2 [cf. (1.7)],  from 
which (2.7) follows immediately. Substituting n = f n* and w* = k(c  T l ) ,  this vertical 
group velocity is T kn*(c T l)3.  Thus (2.6) shows that modulations in the amplitude 
]A*[ propagate vertically upwards, with this group velocity, in z > 0 (downwards 
in z < 0) ,  as the radiation condition (1.8) ensures that the group velocity has the 
appropriate sign. For if we put A* = R*exp{i+*], then (2.6) shows that, since u, is 
real, 

( 2 . 8 ~ )  

(2.8b) 

The nonlinear term iV$ affects only the phase of the wave. Further, (2.8 b )  shows that 
the total frequency G(w* - ku, - ca+/aT) is related to the total vertical wavenumber 
ii(n + sa+/az) by the dispersion relation for internal gravity waves, viz. J2(ii2 + k2) = k2. 
Since u, is proportional to [q.v. (3.1811, the only effect of the nonlinear term is to 
introduce an amplitude-dependent Doppler shift of ku,. There is a similar equation 
to (2.6) for I* which shows that modulations in the incident wave propagate vertically 
downwards in z > 0 (upwards in z < 0) .  Equation (2.6) may be combined with (2.4) 
to show that 

awl aeu 
ax az - + €2 = { & iE*aA* + N:} exp { in*z} T iE*a, I* exp { T i nk}  + O(a5), (2.9) 

where Ti* are the operators defined by the symbols 

E* = n*(w, k ) ,  w = kc-tiisa/aT, (2.10) 

and +(kc, k )  are the solutions of (1.7) which satisfy the radiation condition (1.8). Thus 

(2.1 1 )  

Next we obtain the counterparts of (2.4) for u1 and pl and use the boundary con- 
ditions (2.2) with m = 0. The result is 

a.9(w,  k )  A = a,{g+(w, k )  I* + .9-(~, k )  I-} + J ,  (2.12) 

where I* are evaluated at z = O*, 

. 9 ( ~ , k )  = - i (w-k ) ' f i+- i (w+k) '~ i - ,  (2.13 a)  

(2.13b) B(w, k )  = 2 ( ~  T k )  Ti* 
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and J is the nonlinear expression 

J = - k2&, - ik[F’J+ + (W - k) %+H+ + (W + k) %-H- 

+ i ( o - k ) N , + - i ( o + k ) N , + O ( a 5 ) .  (2.14) 

Here N ;  are evaluated at  z = 0 k . Equations (2.12)-(2.14) confirm the heuristic 
argument which led to (1.15). Now 9(kc ,  k) vanishes because of the dispersion relation 
( l . l O ) ,  so on expanding the operator w [see (2.10)], we find that 

ias9u(kc, k) BA/BT = a,,{g+(kc, k ) I + + g - ( k c ,  k)I-}+J+O(as2,a5) .  (2.15) 

Next, using (1 .7)  and (1.111, it may be shown that 

and 

2ik( 1 - 2k2) (1 - k2)-* for mode (i), 

- 8ik2cZ( 1 - c2)-’ for mode (ii), 

- 2k( 1 - k2)J for mode (i), c - 2k2( 1 f c) for mode (ii). 

g , ( k c ,  k) = 

g*(kc,k)  = 

( 2 . 1 6 ~ )  

(2 .16b)  

It remains to calculate the nonlinear term J. In order to do this, we must first 
caIculate the second harmonics (m = 2) and the mean flow (m = 0) .  For the second 
harmonic, it  transpires that M$ are O(a4) so the equation for w2 is 

L*( - 2ikc, 2ik, 8/82) w2 = O(a4, O ~ ~ I W ~ I ) ,  (2.17) 

where the tarms O(a2]w21) arise from the expansion of the operators L* with respect 
to 6 (=  a2). From (1.2) it  follows that 

8*w2/8z2+ (n$)2w2 = O(a4, a21w21), ( 2 . 1 8 ~ )  

where (n$)2 = (c T 1)-2- 4k2. (2.18b) 

Using the dispersion relations ( 1.1 l), i t  follows that 

1 - 4k2 for mode (i), ( 2 . 1 9 ~ )  

- 2k2(c T 1)-2 (c2 T 4c + 1)  (2.19b) for mode (ii). 
(n8)2 = { 

The appropriate solution of (2.18) is 

w2 = a2A$(T, 2) exp { f in$ z}  + O(a4). (2.20) 

Here we have inserted a factor a2 in anticipation of the fact that the boundary con- 
ditions will show that w2 is O(a2) .  The solution (2.20) must satisfy a radiation con- 
dition; this is determined in a similar way to that which led to the radiation condition 
(1.8) for wl, i.e: we let c have a small positive imaginary part and then require the 
solutions of (2.18) to decay exponentially as IzI +a. Thus we shall require that 

Imng > O ,  or Imn$=O, Ren$><O. (2.21) 

Here we have used the fact that when the dispersion relations (1.7) a.re satisfied 
Ic] < 1. The solution w2 is said to be radiating when n; is real and trapped when n$ 
is imaginary. Thus mode (i) is radiating when k < 8 and is trapped for k > &, while 
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mode (ii) isradiatingfor (2-31) < c < 1 andx > 0, or - 1  < c < -(2-31) andx < 0, 
and is trapped otherwise. 

Using the boundary conditions for m = 2, it may be shown that (Grimshaw 1977) 
for mode (i) 

(2.22) 

where we have relabelled &(F) as a2A2(T). For mode (ii) 

A ,  = ikA-lA2{ - 4k + ( 1  - c2) (n$ + n;)} + O(a2),  ( 2 . 2 3 ~ )  

A$ = 8k2~A- lA2{$ (  1 C) k( 1 T c ) }  + O($), (2.233) 

where A = nB(1-c)2+n,(1-tc)2. (2.23 c) 

VCTe note that A is the counterpart for the second harmonic of the term (1.10) which 
produces the dispersion relation for the first harmonic. It is easily verified that, when 
4 < k < 2-4, A is not zero. However, for mode (i) and k < 8, A is zero and the second 
harmonic is then resonant with the first harmonic; this situation has been examined 
fully elsewhere (Grimshaw 1977) and the results will be discussed briefly a t  the end 
of $4. 

The mean flow (i.e. the Fourier component m = 0) may be obtained by putting 
m = 0 in (2.2) or, alternatively, by averaging (1 .1)  over one wavelength with respect 
to x. This sort of calculation is now well understood, and has been described by 
Acheson (1976) for the case of mean flows forced by internal gravity waves (see also 
McIntyre & Weissman 1978). The result is that uo, the mean horizontal velocity 
forced by the waves in x 2 0, is 

uo = 2a2k-2(c~ 1 ) - 3 1 ~ * 1 2 + 0 ( a 4 ) .  (2.24) 

The mean vertical velocity is zero. It has been shown elsewhere (Grimshaw 1977) 
that the mean interface displacement c0 is zero and that uo, given by (2.24), and the 
corresponding mean pressure field will satisfy the boundary conditions (2.2) for 
m = 0. The role that uo plays in the total energy flux budget has been described by 
Acheson (1976) and McIntyre & Weissman (1978). 

It remains to calculate the Fourier components M i  [see (2.5)] and the various 
terms in J [see (2.14)]. This is a lengthy calculation involving the interaction of the 
Fourier component m = 1 with each of the Fourier components m = 2 and m = 0. It 
transpires that in (2.14) we may replace w by kc and fi* by n* to leading order, and 
that then J is proportional to JA12.4. The details are given elsewhere (Grimshaw 
1977). The result is that 

8ik5ca3 J A  / , A  { 3( 1 + c2) A 4c - .  + 8kc - - [n$( 1 -c)2-  n;( 1 + c ) ~ ] )  + O(a5).  A 1 - 3  1 -c2 
J =  

(2.25) 

3. Discussion of the amplitude equation 
It was shown in $ 1 that the amplitude equation is (1 .17 )  (or (3.1) below). The 

coefficient ,8 is found by first deriving the amplitude equation in the form (2.15), 
where 9u and 9* are given by (2.16)) and then combining this with J as given by 
(2.25). The result is 

a A p T  = PIA12A + I ,  (3.1) 
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where the coefficient ,8 is given by 

10 for mode (i), ( 3 . 2 ~ )  

B = 1 :: 4ik3 (2k( 1 - c2) - nz+( 1 - c)2+ n;( 1 + c)2 ) for mode (ii), (3 .2b)  
nJ(1 - ~ ) ~ + n ; ( 1  + c ) ~  

while I is given by I = l+I+ +/3-I-, ( 3 . 3 ~ )  

where 
(1 - k2)/(  1 - 2k2) for mode (i), 

1 c )  (1 - c2)/4c2 for mode (ii). 
(3 .3b)  

(3 .3c )  

Here I* are evaluated at 2 = O*, so I represents the effect of the incident wave packets 
on the interface, and is a known quantity. If the nonlinear effects are ignored then (3 .1)  
implies that the growth of A is proportional to I ,  a result first obtained by McIntyre 
& Weissman (1978). Without loss of generality we shall assume that I ( T )  is zero for 
T < 0, i.e. the incident wave packets arrive at  the interface at  T = 0. 

For mode (i) (viz. c = 0 and t < k < 2-4), p is zero and (3 .1 )  may be integrated 
immediately. If I is zero (i.e. no incident wave packets), then (3 .1 )  shows that A is a 
constant. Recalling the discussion at the end of $ 1 ,  this means that a time scale 
O(a-2) is not long enough to  determine the evolution of A .  If I is not zero, then 

where A ,  is the amplitude at  T = 0 (if the sole excitation of the interface is due to the 
incident wave packets, then A ,  = 0). If I is constant, then (3 .4 )  shows that A grows 
linearly with T.  However, if the incident wave packets have finite extent ( I  = 0 for 
T 2 To say), then 

(3 .5 )  A - + A ~  +Jam I(T')  d ~ '  as T -+a. 

In this case then, the incident wave packet excites a steady (in the present frame of 
reference) periodic wave on the interface, which in turn radiates waves into z 2 0. 
The magnitude of the excited wave is proportional both to the magnitude of the 
incident wave and to the length of the incident wave packet. In dimensional terms an 
incident wave packet of magnitude f* (i.e. UN-la, ll*(, where we recall that U is the 
velocity scale and N-l is the time scale) and length (in time) At will excite an interfacial 
wave of amplitude NAt@*f+. Here @* are given by (3 .3 )  and range from 4 when k 
is 8 to infinity when k is 2-6. If A1 is the length (in space) of the wave packet, then 
A1 = 1 kn*l At as 9 kn* are the vertical group velocities of the incident waves, and for a 
wave packet containing M wavelengths A1 is 2nMJn*l-l .  Hence we can estimate At 
to be 2nM(k( 1 - k2))-l.  Lindzen (1974) discussed four observations of internal gravity 
waves associated with shear zones, and these observations are reproduced in table 1. 
Although these waves were observed in circumstances' considerably more complex 
than the simple model considered here, we shall nevertheless use these observations 
to illustrate our theory. If we put M = 10, then the magnification factor NAt,8* is 
9-5 for case 1 and 22.0 for case 2. For case 3 the observed wavenumber is in the unstable 
range, while for case 4 the observed wavenumbers straddle the critical wavenumber; 
for this last case the waves with wavelength 20 km have a magnification factor of 
6.6 when M = 10. 
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For mode (ii) (viz. 2kZ(c2+ 1)  = 1 and 4 < k < 2-4) both the real and the imaginary 

(3.6) 
part of P are non-zero. Let 

P = PR +i/31. 

Then we shall show that PIt is positive. Suppose first that  I c I  < 2 - 3 i ;  then the 
second harmonic (2.20) is trapped in both z >< 0 and n$ = im;, where m$ are positive. 

and is clearly positive. If 2 - 3* < c < 1,  then n: is real while ny = im; (the second 
harmonic (2 .20 )  is trapped in z < 0, but radiates in z > 0). I n  this case 

and it may easily be shown that this is always positive. The case when 

- 1 < c < - (2 - 3 t ) ,  

n$ = im,+ and n; is real is similar to this last case. The fact that PR is non-zero is due 
to both the asymmetry of the mode (i.e. c 8 0) and the trapped nature of the second 
harmonic (either in z 2 0, or in one of z > 0 or z < 0 ) ,  as it is apparent from (3.2) that 
if n$ were both real then /? would be pure imaginary. Table 2 contains some calculated 
values of /3 for various values of c and k (for negative values of c ,  Pn has the same value 
while PI is replaced by - P I ) .  

We have been unable to obtain the general solution of (3.1) when P is non-zero. 
The amplitude equation (3.1) is similar to amplitude equations encountered in the 
theory of stability of viscous flows (e.g. Landau & Lifshitz 1959, p. 104; or Stuart 
1960); the principal difference is the absence of a linear term in A and the presence of 
the forcing term I. When I is zero, the solution is readily obtained, but in general 
(3.1) must be solved by numerical methods. Here we shall consider two extreme cases. 
For the first suppose that the time scale of the incident wave packet is very short, so 
that I may be approximated by AoS(T-To),  where S(T) is the delta-function. Then 
the solution of (3.1) is zero for T < To and 

A = A o { l - 2 ~ I i ~ A o ~ 2 ( T - T o ) } - v  for T > To, 

where v = P(2/3&1. 

It follows that, for T 2 To, 

(3.9a) 

(3.9b) 

I A I = I A 0 1 { - ' P R  1 I ' (T - T O ) } - i  9 ( 3 . 1 0 ~ )  

artrg A = arg Ao - (PI/2PIt) (1 - 2/31, ( T -  To)}, (3.10b) 

(3.9) is also the solution when I is zero, and A = A ,  at T = T,. The solution (3.9) is 
thus also the asymptotic solution when an incident wave packet of finite extent 
encounters the interface (i.e. I is non-zero only for 0 < T < To). The solution (3.9) 
develops a singularity in a time T ,  (after To), where 

Tw = (2PRIA012) -1 .  (3.11) 

As (T - To) -+ T,, both I A1 and arg A approach infinity, so A spirals outwards around 
the origin in the complex A plane. T ,  may be regarded as a measure of the lifetime 
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C 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

k 

0.704 
0.693 
0.677 
0.657 
0.632 
0.606 
0,579 
0.552 
0.526 

P R  

0.97 1 
0.896 
0.512 
0.185 
0.07 10 
0.0252 
0.00756 
0.00162 
0.000168 

PI 

- 10.1 
- 4.38 
- 2.08 
- 1.30 
- 04374 
- 0.621 
- 0.463 
- 0.363 
- 0.296 

P I  / P R  

- 10.4 
- 4.89 
- 4.07 
- 7.00 
- 12.3 
- 24.6 
- 61.3 
- 224 
- 1760 

PRI A O I  Tm 

0.408 
0.475 
0.512 
0.427 
0.408 
0.419 
0.421 
0.421 
0.421 

TABLE 2. Calculated values of PR,  PI and PRI-4,12T, [see (3.16)] for mode ( i i ) .  

for periodic waves on the interface. In  dimensional terms, if an incident wave packet 
excites waves on the interface of magnitude Â  (i.e. U N - h [ A , J ) ,  then their estimated 
lifetime is U2(2,8,A2N3)-'. For the observed waves tabdated in table 1, the estimated 
lifetime is I51 min for case 1 and 24 min for case 2 ;  for the 20 km waves of case 4, the 
estimated lifetime is 24 h. (The value used for PR is interpolated from table 2 . )  These 
times serve to illustrate the strong dependence of the estimated lifetime on the 
dimensionless wavelength, the lifetime increasing considerably as the wavelength 
increases. 

Next suppose that the time scale of the incidenbaye is very long, so that we may 
put I equal to a constant; let I = -P(A,12A,. Then A = A ,  is an equilibrium solution; 
however, this equilibrium solution is unstable, and all solutions of ( 3 . 1 )  develop a 
singularity in a finite time. Let A = A ,  B. Then 

aB/BT = PIAo12(IB12B- 1 ) .  ( 3 .12 )  

It may be shown that this equation (two first-order equations for the real and imaginary 
parts of B )  has just the one equilibrium point ( B  = I )  and no limit cycles. Let 

@ = IB14-4BR, where B = B,+iB,. (3 .13 )  

Then it is readily shown that 

(3 .14)  

The curves @ = constant are the integral curves of ( 3 . 1 2 )  when PR = 0. At the equili- 
brium point ( B  = i), @ is - 3 and the curves @ = constant are approximately ellipses; 
as @ increases to  infinity, the curves @ = constant more closely approximate circles. 
When P R  is positive, ( 3 . 1 4 )  shows that @ increases with time T ,  and hence all solutions 
of (3 .12 )  spiral outwards in the complex B plane. Further, when I B J  becomes sufficiently 
large, B will approach the asymptotic solution ( 3 . 9 ) .  Indeed, i t  may be shown that 

B = Bo{ I - 2P,(A,I IB,( (T - To)}-" { 1 + O[(T  - To)+ IBol-3]} (3 .15 )  

for sufficiently large values of 1 B,I ; here B, is the value of B when T is To and v is 
defined by ( 3 . 9 ) .  It follows from (3 .15 )  that B develops a singularity in a time T,, where 

(3 .16 )  

The values of B, and To depend on the initial conditions for (3 .12 ) .  
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FIGURE 2. The computed evolution of B for mode (ii) and c = 0.4. The crosses represent the 
values of B for PRIA,IZ T equal to 0.1,0.2,0.3 and 0.4. 

Equation (3.12) was integrated numerically for the initial condition B = 0 at 
T = 0 (i.e. the sole excitation is due to the incident wave packet); the integration 
was carried forward until (3.15) was satisfied, and so IAOl2T, could be determined. 
The results are displayed in table 2. The numerical results show that, as the ratio 
IPl/,B13( +a, P,IA0J2T, approaches the asymptotic value 0.421. This result may be 
established analytically. For large values of the ratio I,81/,8RI, (3.14) shows that 4 
varies only slightly during one cycle around the origin, and each cycle around the 
origin follows an integral curve of $ closely. Hence we may obtain an approximate 
solution by integrating (3.14) around an integral curve of $, and obtain 

where P($) is the time required to traverse one cycle on the integral curve @ = constant 
(assuming P R  x 0). This determines a$/aT as a function of $, and integration from 
$ equals zero to infinity will determine PRJAO(2Tm. This procedure also yields 

PxlAo12T, 2: 0.421 

when JPl//3nI is large. In figure 2 we show a plot of B as i t  evolves in time for c = 0.4 
(the results for other values of c are similar); it is apparent that, for most of the time 
up to T,, IBJ increases steadily while B travels around the origin a relatively small 
number of times. During the final passage to T,, B is governed by (3.15) and as JBI 
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increases B travels rapidly around the origin. T ,  may be regarded as a measure of the 
lifetime of periodic waves on the interface. In  dimensional terms, if the incident wave 
packet has amplitude I*, then the estimated lifetime is U2N-3A-2(A,12Tm, where 
l/3*f*l = N2U-2//3A3]. For the observed waves tabulated in table 1, the estimated 
lifetime is 144 min for case 1 and 27 min for case 2; for the 20km waves of case 4 the 
estimated lifetime is 20 h. Here the observed amplitude has been used to determine 
A and hence infer I*, while the value of I A,I2 T ,  has been interpolated from table 2. 

4. Summary 
The principal purpose of this paper is to examine the weakly nonlinear aspects of 

resonant over-reflexion for the specific case of a Helmholtz velocity profile embedded 
in an infinite continuously stratified Boussinesq fluid. The range of dimensionless 
wavenumbers considered is 4 < k < 2-4 (the length scale of the model is UN-'). A 
heuristic argument, given a t  the end of $ 1, suggested that the interface displacement 
aA(T) ,  where T = a2t, evolves on a time scale where a is a small parameter 
measuring the magnitude of the interface displasement, and may be excited by an 
incident wave packet of magnitude O(a3). It was suggested that the amplitude equation 
is (1.17), or (3.1),  viz. 

BA/BT = PI.4 1 A + I ,  (4.1) 

where I is a known forcing term [q.v. (3.3)]. The subsequent analysis outlined in $ 2  
confirmed that this is the required amplitude equation, and enabled us to calculate 
the coefficient /3 [q.v. (3.2)]. Although our detailed analysis is confined to tke specific 
case of a Helmholtz velocity profile, the heuristic argument at  the end of $ 1 suggests 
that the amplitude equation for resonant over2reflexion may take the same form as 
(4.1) in other situations. Once A has been determined from (4.1), the behaviour of 
A* in z 2 0 is determined from (2.6), or (2.8); as described in 3 2, these represent 
internal gravity waves propagating away from the interface. 

The present choice of a vortex-shcet model was made solely for analytical con- 
venience, although it suffers from the disadvantage that it possesses, for k > 2-4, 
unstable linear modes and is too simple for the results to be applied directly to 
atmospheric observations. However, the use of a more sophisticated model with a 
continuous velocity profile and hence a shear layer of finite thickness is analytically 
much more difficult owing mainly to the singularity at  the critical level which occurs 
in linear theory. Further, it was pointed out by Drazin & Howard (1966, p. 67) that 
the stability characteristics of a continuous velocity profile in the long-wavelength 
limit may not necessarily coincide with the stability characteristics of a vortex-sheet 
model. The reality of this difficulty was recently confirmed by Blumen, Drazin & 
Billings (1975) in an analysis of the linear stability of a shear layer in an inviscid 
compressible (unstratified) fluid; they found the existence of an unstable mode of 
long wavelength (with small growth rate) which exists for all values of the Mach 
number greater than 1,  whereas the corresponding vortex-sheet model predicted 
stability for values of the Mach number greater than 24. The possibility of this 
phenomenon occurring also for shear flows in inviscid stratified fluids is supported 
by the work of Einaudi & Lalas (1976), who calculated the linear stability properties 
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of a continuous shear layer in a stratified fluid of bounded vertical extent; they 
established the existence of unstable modes of long wavelength and conjectured from 
their results that these unstable modes may continue to exist in an infinite fluid. On 
the other hand Eltayeb & McKenzie (1975) have established the existence of over- 
reflexion for internal gravity waves incident upon a finite shear layer, although they 
did not attempt to identify resonant over-reflexion or the stability characteristics of 
their model. In summary, it would seem that, while the use of a continuous velocity 
profile is desirable and more realistic, it  is, at the present time, analytically intractable 
in relation to nonlinear effects. Whether or not an amplitude equation such as (4.1) 
can be found for other models where resonant over-reflexion occurs, the vortex-sheet 
model allows us to calculate the coefficient p explicitly and make some deductions 
about nonlinear effects. 

For mode (i) [q.v. (1 .1  l )]  we find that ,8 is zero [see (3.2)]. The evolution of A on the 
time scale a2t is completely determined by the forcing term I, provided that the in- 
cident wave is O(a3) ;  the effect of nonlinear terms requires the use of a longer time 
scale (say a4t) than that considered in this paper. In  the absence of the forcing term 
(i.e. when the excitation by the incident wave has ceased), this mode exists, in its 
linear form, in the weakly nonlinear regime, and the only nonlinear effect is a change 
in the vertical phase speed (q.v. (2 .8)  and the subsequent discussion). Thus the 
vanishing of the coefficient p establishes the existence of a finite amplitude steady wave 
on the interface, accompanied by internal gravity waves radiating away from the 
interface. Further, this steady wave can be excited by a transient incident wave. For 
the range of wavenumbers considered the interfacial wave can be ten or twenty times 
the magnitude of the incident wave. 

For mode (ii) [q.v. (1.1 l ) ]  we find that px, the real part of p, is positive (the imaginary 
part of p is also non-zero). The solutions of (4.1) are found in two cases, when I is a 
delta-function and when I is a constant (q.v. $ 3 ) ;  in general, I will lie somewhere 
between these extremes. In  both cases it is found that A develops a singularity in a 
finite time. It seems likely that this will occur whenever the forcing term I is bounded. 
Hence we conclude that mode (ii) is unstable; the instability is due to the nonlinear 
self-interaction of the primary wave with its second harmonic (the self-interaction 
of the primary wave with the induced mean flow contributes only to the imaginary 
part of /3). It is perhaps surprising that a completely neutral wave can undergo this 
form of nonlinear instability, as previous calculations of nonlinear effects for neutral 
waves in inviscid systems have produced a coefficient p with zero real part. The fact 
that p has a positive real part here is due to the fact that the system is unbounded 
in vertical extent, and the neutral wave is a resonant over-reflexion mode. Hence, 
while the vertical wavenumbers n+ [q.v. (1.7) and (1.12)] for the primary mode are 
real, the corresponding vertical wavenumbers n$ [q.v. (2.19)] for the second harmonic 
are not both real; it is this fact which causes the real part of ,8 to be positive. We 
conjecture that this instability may occur in other systems exhibiting resonant over- 
reflexion. For the present case we calculated in $ 3 the time from the initial excitation 
to the singularity for the two extreme cases when I is a delta-function and when I 
is a constant; in both cases we found that this time (dimensionless), interpreted as a 
lifetime for the mode (ii), is proportional to (/31zJAo)2)-1, where / A o ]  is measure of the 
magnitude of the initial excitation. The coefficient p12 depends strongly on the 
dimensionless wavenumber k (table 2), decreasing as k decreases. We estimate life- 
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times ranging from 20min (for waves with dimensionless wavenumber close to the 
critical value k, = 2-4) to  20 h (dimensionless wavenumber close to &). 

When k < 4, the primary wave for mode (i) is in resonance with its second harmonic 
(i.e. t h e  dispersion relation (1.10) is satisfied with n* replaced by n$, the vertical 
wavenumbers for the second harmonic). This situation has been analysed in detail 
elsewhere (Grimshaw 1977). It has been shown that the resonance is weak; the second 
harmonic is O(a2) .  The final result is that  A is again given by (4.1) with /3 equal to 
zero, so the determination of A in terms of I is unchanged from the case 8 < k < 2-4, 
the only change being in the expression for the second harmonic. One point of interest 
which arises is that when k < 4 the third harmonic enters into a resonance with the 
first two harmonics (i.e. the dispersion relation (1.10) is satisfied with n* replaced by 
n$, the appropriate vertical wavenumbers for the third harmonic). I n  general, for 
k < l / m ,  the first m harmonics are in resonance and clearly, as k+ 0,  the concept of 
a Fourier analysis, implied by (2. l ) ,  fails. 

Finally, when k is close to the critical value kc ( =  2-4)) modes (i) and (ii) coalesce. 
The dispersion relation (1.10) then has three solutions; consequently 9(0, k) has a 
third-order zero for w ,  and the amplitude equation (1.15) is a third-order equation in 
time T .  This case, in the absence of an incident wave packet, was examined by 
Grimshaw (1976); the effects of an incident wave packet have been described in detail 
by Grimshaw (1977). It was shown that, for a delta-function forcing ( I ( T )  = A&T)), 
IA 1 undergoes a large amplitude oscillation, while, for continual constant forcing, 1.4 1 
grows indefinitely as (TI*. By contrast with the behaviour of mode (ii) for k < kc, i t  
would seem that the ability of the three modes [mode (i) and the two modes of type 
(ii)] to interact is inhibiting in this circumstance, and prevents a singularity from 
developing in a finite time. 
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